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Plane linearly and circularly polarized intense electromagnetic waves in cold underdense plasmas are con-
sidered and approximate expressions for them and adiabatic relations between their local amplitudes and
frequencies are established. A general three-dimensional theory is developed for the instability of propagation
of a plane monochromatic circularly polarized electromagnetic wave in plasma including the violation of its
initial polarization. Excitation of harmonics resulting from the relativistic and charge-displacement nonlineari-
ties, scattering due to the response of the electron fluid, decay instability of harmonics leading to the emergence
of scattered electromagnetic waves and plasmons, wave-wave interactions, and the generation of a continuum
of scattered radiation are studig®1063-651X99)10301-3

PACS numbgs): 52.35—-g, 04.30.Nk, 42.65-k, 11.80—m

I. INTRODUCTION AND BASIC EQUATIONS (spatial gains of the scattered radiation in a plasma infini-
tesimal volume as functions of components of the scattered
A number of recent works were dedicated to theoreticalight wave vector and the incident pulse parameters. In con-
and experimental studies of the propagation of ultrahigh intrast, the second one is an integrodifferential transport prob-
tensity laser radiation in mattdi—17]. Intensities on the lem of calculating the radiation field far from the scattering
order of 188 W/cn? or higher are considered ultrahigh since domain accounting for absorption and gain on the total
the motions of electrons driven by them are relativistic. Atpropagation distance. The first of the above problems is
present ultrashort laser pulses of such intensities are used ireated in detail in the present paper: the scattering temporal
experiment$14—1€, including experimental observations of growth rates are calculated. The second problem is consid-
scattering[17]. The central part of an ultrashort laser pulseered on a qualitative level only.
focused into matter interacts with the plasma that is formed The task of developing a spatially three-dimensional
at its front. It is well known that matter irradiated by a pow- model of scattering of circularly polarized relativistically in-
erful laser can be polarized due to nonlinear currents of fre¢ense plane monochromatic electromagnetic waves in plasma
electrong 18], deformations of electron shells of atoms andwas addressed recenfl{0,13. The theory proposed in these
ions[19], and vibrations and rotations of molecu[@§]. The  works includes a range of wave phenomena: excitation of
first of the above effects plays a major role in experimentsarmonics, Raman scattering, the fluid dynamical analog of
with light atomic gases since in this case the ionization ofCompton-effect, etc., as well as the limits that have been
matter is complete. Below we consider the scattering of lasestudied previously, mainly the nonrelativistic one. Reference
radiation under these circumstances. Scattering of las¢n1]is dedicated to the same problem but a linearly polarized
pulses in plasmas at nonrelativistic intensities was studiedaump is considered in it.
for example, i18,21-26. Scattering and excitation of har- ~ However, various approximations are used in the existing
monics at relativistic intensities were treated in paperditerature due to the complexity of the problem of scattering
[1,2,9-11,13 (see alsd3-7]). of relativistically intense electromagnetic waves in plasma.
Schematically one can say that there are two practicallfrhese approximations includd) the slab geometry limit
unrelated aspects of the problem of scattering of laser radigsee, for exampld9)); (2) the assumption of conservation of
tion in matter. The first aspect concerns finding local characa certain type of polarization, circular in particufds]; (3)
teristics of the medium, namely, the temporal growth rateshe calculation of growth rates under the assumption that one
of the wave vector components is zdr0]; and (4) reso-
nance conditions based on exact phase maitcltseg, for
*FAX: (095 135-02-70. Electronic address: obs@kapella.gpi.ru example[24]).
"Present address: Department of Coherent and Nonlinear Optics, Neither of the above approximations is used in the frame-
General Physics Institute of the Russian Academy of Sciencework of the theory of scattering of relativistically intense
Vavilov Street 38, Box 117942, Moskow, Russia. laser radiation in plasmas, which is developed in the present
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paper. We employ numerical techniques to describe harmon- n

ics excitation, Raman scattering by plasmons, the fluid dy- nﬁ—(V, p (A+Vl//)) =0, (1.9
namics analog of Compton scattering, generation of a con-

tinuum of radiation, and the interplay of all these y=V1+|A+Vy2 (1.6)

phenomena. Linearized Maxwell equations and the equations
of fluid dynamics for the electron component of laser-

'rragfgegeﬂgzgi a;iaac?algozsg dr-lgt(;rtzuzlglﬁtion of the initial omentum, and is the electronic concentration. Equation
9 1.6) defines the relativistic mass factgr

nonlinear set of equations to perform such analyses. In gen- 1,4 quantities in Eq(1.1)—(1.6) are normalized as fol-
eral, plane electromagnetic waves of arbitrarily high intensiq,, <. A and ¢ are normalized bync?/e, n—by its unper-
ties propagating in cold underdense plasmas are described Qypeq valueng, time—by 1k, where w, is the unper-
solutions to the classic Akhiezer-Polovin probl¢a¥]. Be-  y,rhed plasma frequency, and the coordinates are normalized
low we develop a class of approximate solutions to this probyy ¢/ .
lem Corresponding to hlgh frequency electromagnetic Waves Conservation laws for the System Comprising Hq_s]_)_
with the help of a nonlinear analog of the WKB approxima- (1.6) can be found, for example, ii29].
tion. In the present paper the exact solution corresponding to
a plane circularly polarized monochromatic electromagnetic Il. SELF-MODULATED RELATIVISTICALLY INTENSE
wave[27] is used for the linear instability analysis. HIGH FREQUENCY PLANE ELECTROMAGNETIC

It should be noted that stability analysis was performed a WAVES IN COLD UNDERDENSE PLASMAS
number of times for linearly polarized monochromatic waves
that do not correspond to exact solutions of the initial non-

linear set of equations and consequently the resulting theory The propagation of relativistically intense plane electro-
was applicable to the case of low intensities only. magnetic waves in cold plasmas is described by the classic

The problem of instability of a plane circularly polarized Akhiezer-Polovin probleni27]. In general the solutions to
monochromatic electromagnetic wave in plasma is reducef{!iS Problem can be developed numerically. Analytical ex-
to a set of linear partial differential equations with rapidly pressions for th_ese_solutlons are available for low amplitude
oscillating coefficients. When a comoving variable is intro- and purely longitudinal wavef27] as well as when the lon-

duced and the equations are Fourier transformed in space %'IUdmal component of the plasma electronic momentum is

infinite linear set of coupled ordinary differential equations is Pna_ll [30,31. A numerical study of soluti(_)ns o the :
derived (the infinite dimension of the set is related to the Akhiezer-Polovin problem on the phase plane is presented in

need to describe excitation of numerous harmonics and thegr IH the present section we develop some numerical and
interactions. The simulations performed show that a corréCtapproximate analytical solutions to the Akhiezer-Polovin
solution to the above problem can be obtained by treatingyroplem. These solutions describe linearly and circularly po-
over a hundred coupled ordinary differential equations. Thearized self-modulated electromagnetic waves propagating in
temporal growth rate of the problem is defined as the maxiplasma with a phase velocity close to the speed of light.
mal eigenvalue of the matrix of the above set of equations. In  Following [27] we put V, =0 in Eq. (1.1)—(1.6) and
particular, this approach makes it possible to avoid derivingurther assume that all the unknown functions depend on
and solving complicated dispersion relations. Note that ahe comoving variableé=x—qt, where the phase velo-
similar technique is applied in fluid dynamics for analyzing city (normalized by the speed of lights expressed ag

the linear stage of the emergence of turbulef8). Previ- =(1+&2)Y2 & being the problem parameter. As shown in
ously the authors of the present paper used this method {@7], in this case the problem is reduced to the following set
analyze the instability of a plane electromagnetic wave in th@f coupled nonlinear ordinary differential equation for the
framework of the circular polarization conservation approxi-vector and scalar potentials

mation[13].

Thus, the results of a rigorous linear analysis of the set of
Maxwell equations and the relativistic fluid dynamics of
plasma electrons are presented below for the first time.

The propagation of relativistically intense laser radiation )

. . . 1+e

in cold underdense plasma is described by the Maxwell F(A,@,8)= "\ O (2.3
equations and the equations of relativistic fluid dynamics for e%+e2(1+]|A]?)

the plasma electron compongffor example, se¢29)),

Here A and ¢ are the vector and scalar potentials of the
electromagnetic fieldys is the potential of the generalized

A. Akhiezer-Polovin problem

e?Ag+F(A,0,6)A=0, (2.1

82(P§§+F(A,(P,8)(P_1:0, (22)

The invariants of this problem are expressed 2§

n 2 2, 2 =
(A—&E)A=V¢[+;(A+V¢), (1.1) g%|Ad*+ @z +W(A, ¢,e)=E=const,
2
W(A,p,e)=— (N1+e2\o?+e%(1+]A1D) — @),
Ap=n-1, (1.2 (Ap.e) 82(‘/ e2\e2+s2(1+|A]) — o)
(V.,A)=0, (1.3 APz~ ArAL =M=const,

whereA; andA, are the transverse components of the vector
bi=0—, (1.4  potential (A3=0 in the Coulomb gauge The longitudinal
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FIG. 1. Numerical solutions to the Akhiezer-Polovin problem  FIG. 2. The scalar potentigd and the amplitude of the vector
[Egs. (2.1)—(2.3)] for the initial conditions:A;(0)=1.2, A;,(0) potential calculated using Eq&2.9) and (2.11). The initial condi-

=0, ¢(0)=2, ¢,(0)=0, e=0.1. tions are the same as in Fig. 1.
momentum of the plasma electron component and the per- o’ 2
turbation of the electron concentration are functions of the 1 1+ o ¢
i ==\ —"1/, 2.9
vector and scalar potentials PDee > 52 (2.9

p:872( \/(p2+ 82(1+|A|2)_(p\/1+ 82), (24) and find thaﬂ((g):¢—1/2(§) and

e V1+sg? _ ®=s—1J o Vg, (2.10

(2.5
Vo2t e2(11|AP)

n-1=¢ 2 1-
U(£,0)=a¢sin 0. (2.1)

B. Linearly polarized plane electromagnetic waves In the above equation can be interpreted as the parameter

Figure 1 shows a numerical solution to Eq8.1)—(2.9 of coupling of the electromagnetic fie_ld and the angmuir
(linear polarization Obviously, amplitude modulation oc- Wake of the plasma. The value of this parameter is deter-
curs, namely, the electromagnetic radiation is concentrate_ﬂ"ned by initial .condltlons. The following conservation law
between the peaks of the electrostatic potential. One can aldd associated with Eq2.9):
see that the frequency of the vector potential oscillation var- 5
ies between the peak and the minimum of the scalar poten- ¢+ V(¢)=E=const, (212
tial, i.e., phase modulation also takes place.

Generally the phase velocity of electromagnetic waves is V(p)=p+¢ t+a’¢p 12 (213
close to the speed of light and the parametaés small in
case the frequency of the propagating laser pulse is much Figure 2 shows the scalar potentigl and the self-
greater than the unperturbed p|asma frequency_ Our goa| @Odulated amplitude of the vector potential calculated USing
to develop asymptotic expansions of the solutions to EqsEds.(2.9) and(2.11). The initial conditions are the same as

(2.)—(2.3 in ¢ in this particular case. We use the ansatzin Fig. 1. o . .
(see, for exampld;33)) Note that a similar technique was used 34| to describe

soliton modes of propagation of relativistically intense laser
“ pulses in plasmas.
A(§)=U(£,0)+ 2_ eMUm(&,09), (2.6) It follows easily from Eqs(2.12 and(2.13 that the pe-
m=1 riod of the slow Langmurian waves generated by the propa-
gating rapidly oscillating field is given by

©

P(E)=P(£0)+ 2, eMpn(£,0), (27 do
" T(E,g)= ¢ —, 2.1
B (E.g%) = (2.14
0 =& Kk(&). (2.9

where$ denotes integration over a full cycle between the two
Herek(¢) is an additional independent function. Substitutingsolutions ofV(¢)=E.
Egs.(2.6—(2.8) in Egs.(2.1)—(2.3) and eliminating secular Combining Egs.(2.6)—(2.8), (2.11), (2.4), and (2.5 one
terms in the lowest orders ia we arrive at the following finds that the concentration and longitudinal momentum of
averaged nonlinear equation: the plasma electron component are
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a? Averaging it first over the fast oscillations and then over the
1 1+ 5 P2 o2 slow wave periodl and using the quantization condition we
n—-1=- 1] - cos M, get
2 ¢2 4¢)3/2 - 7Tma2
T
p=¢(n—-1), (2.15

The simplest solution to Eq2.9 is a constantp= ¢
which shows that the electron fluid concentration and mo-, L the_ corresponding electromagnetic field being mono-
> . chromatic,
mentum exhibit a slow response to the propagating electro-
magnetic field and oscillations at the frequency of the second 5
harmonics. U= v2(¢5—1)sin
Two simple analogies are related to Ed2.10 and eV g
(2.11). Note that a formal expansion of the nonlinearity in The linear instability of this solution is studied ja1].

Eq. (2.1 in €2 results in

C. Circularly polarized plane electromagnetic waves

82A§§+ ¢ 'A=0. Asymptotic solutions to problem2.1)—(2.3) correspond-
ing to the case of circular polarization are derived in a man-
First, if we assume thap varies slowly{and this assump- ner similar to that outlined above and expressed as
tion is natural since expanding E.2) in 2 formally one

obtains an equation that is not singularly perturbéue Ay(&)=ap™(£)cos0,
above equation can be interpreted as the Einstein pendulum . Yy o s
(i.e., a pendulum with a slowly varying frequengyroblem Ay(§) =L agpT(£)sin O,
[35]. Even though in our case this frequency is not an exand the equation fos and its first integral differ from those
plicitly defined function but must be calculated from anothergiven by Eqs(2.9), (2.12), and(2.13) in the following way:
nonlinear equation there is the same relation between thgere isa? instead ofa?/2 and 22 instead ofa? in them,
local frequency respectively. In this case there is no second harmonics com-
_ onent in the plasma wake,
Q&= MA&)le P P

1 1+a2¢1/2_1)

and amplitudeay,=a¢p¥4(¢): a3Q=a?e. Consequently n-1=5 e

the constantr®/e can be interpreted as an adiabatic invariant

of problem(2.1)—(2.3). It should be noted that since the fre- [the electron fluid momentum is related to the above quantity
quency shift can be recorded experimentally the preserfly Eq.(2.19 just as in the case of linear polarizatjon
amplitude-frequency relation can be used for experimental Also, just like the case of linear polarization there exist

diagnostics of the propagation process_ mOI’lOChromatiC CirCUIarIy polarized waves giVen [W]
Second, the above equation for the vector potential is for- 5

mally analogous to the Schiimger equation for a particle in A1=Vd¢5—1 cos \/— (2.19

a potential well. In the framework of this analogy the small &V ¢o

parametee and the functionp ™ play the roles of the Plank

constant and the square of the particle classical momentum, A,=+ 1 /¢(2)_1 sin (2.17

respectively. Obviously the theory derived above is similar e /d)
to the WKB approximation. 0
The quantization condition for Eq$2.9—(2.13 is also It should be noted that this particular solution is an exact

analogous to that of quantum mechanics, one. A number of works was dedicated to its instabi(fyr
example, se¢9-13)), which will be considered below as
1 do¢ well.
J= ¢ ¢ VAg= ——— =27em,
VO(E-V(¢)) lll. EQUATIONS DESCRIBING THE INSTABILITY
, ) o , _ OF CIRCULARLY POLARIZED MONOCHROMATIC
wherem>1 is an integer. The last equation is the dispersion LASER RADIATION IN PLASMAS

relation for the plane waves studied since the local frequency ) _
of the electromagnetic field averaged over the slow period Introducing the notations

makes§=(J/sT)=(27rm/T). The quantization conditions 1
correspond to the periodic solutions of the Akhiezer-Polovin /
probleﬁm periodic sot e v ao=V¢o—1, do=7v, K ,

The above quantization condition can be used to find the &N bo
average intensity of the electromagnetic wave defined by ae present Eqg2.16 and(2.17 describing the propagation
solution to the Akhiezer-Polovin problem. It can be derivedof a plane monochromatic circularly polarized wave in the
easily that the corresponding normalized intensity is form

a? Ao=3(e+iey)agexpiké)+c.c. (3.1

| = EEIRT COSZ. .
e In this case we also have
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w?—K2=yy!, y=vV1+aj, n=1, o=y, ¢=0. Dtlﬂ—€D+92[(H1+iH2)X—k+(H1—in)X+k]:?é 1
Consider the evolution of small perturbatiofshich are '
marked by~) in plasma against the background defined by B.n=(v-Lly24 (vl 2y yti +
the above relations, Din= (v "X+ (vo —9DK) +igi(kiA;+KoAz)

- - — iki—ko)n,_+(ik;+ko)n
A=AgtA. n=1+%, o=vyotD U=V. (3.2 g2((iky—ko)n, +(ikg+ko)n, 4 p)

91 . .
The linearized equations governing the perturbations are + 5 [k =ka) I = (ika+ky)TTo ], ok

(A—0)A=Ve+ vy HA+Vy+TiA, 9, .
"‘3[(|k1+k2)H1_('kz_kl)ﬂz]x+2k- (3.12

— 70 (Ao, A+ VA, (33
AP=T, (3.4 Here
V,A)=0, 3. a2 a
( ) (39 91=2—0, 92=§, k2=k§+k2.
~ - _ ~ ~ 0% 0
Ih=3—70 (Ao, A+ V). (3.6 °
The following continuity equation is obtained by calculating A=(A1,A2,A3), TI1,=Ag ot 1Ky,

the divergence of the left and right hand sides of E3)
and using Eq(3.4),

2
0

A+ 7o (Ag, V1)

== %0 AP+ ¥ (A0, V(Ao A+ V). (3.7) - _(k ki iko 1)
. . . 117 | ™1 W_ "
Equations(3.3)—(3.7) are identical to those used 0] ex-
cept for the normalization. But our method of studying the .
instability is different from that used in this paper. We intro- Fx =<1—k SRLY: (T1,Fill,)
duce comoving variable( ,¢,t), the result being a set of 12 " ! 2

linear partial differential equations the coefficients of which

are periodic iné. Since the propagation of radiation in an . [ Kk Fiky
unbounded plasma is considered we Fourier transform this Fao.= —m( iky WI )
set of equations ix, andé, X

ik, =k

(Z\,'co,ﬁizf#(zwrg’zf exifi ((kx,)+x&)] F§,2=(kz v

(i, +1I,).

A== TN 2
X (AN, ¥) (k x,1)d%kdy. Shifting the argumenyy in the above equations by Ik,
The symbol “~" denoting perturbations is dropped in what wherel stands for an integer, we establish an infinite set of

follows for brevity. The resulting equations for the Fourier coupled linear ord.ine_lry differential equatiqn_s for the ampli-
transforms are tudes of laser radiation harmonics comprising the perturba-

tions. This set can be presented as

. ik x? k1K, K3+ x?
DAI+01 ——=¢¥—01 ——A+tg1 ——A Y.=BY, 3.1
+ FE7) L +(FF whereY is an infinite column an® is an infinite 35-diagonal
Oal (P it (Frdynd matrix. Below the eigenvalues of matrwill be calculated
O _ + numerically with the help of the techniques presented in
TS [(F12 -2kt (F12)y+24]=0, (3.9 [36].
A ikox? kiko K+ x? IV. SLAB GEOMETRY EQUATIONS
DA+01 ——— ¢—01 5 A1t01 5 —— Az
K+ x K+ x K+ x In the slab geometry casle,=0 and k,=0, and Egs.
- 3.8—(3.12 become
4ol (F39)y i+ (FEo) oid (3.89-3.12
91, D1A;+9:1A;—ga(N,_+n
+§[(Fz,z)rszF(F2+,2)X+2k]:01 (3.9 1AL G1AT™ Gy F Ny

g . .
— (K24 ) p=n, (3.10 + 71 [(A1+iA2) -2kt (A1 —1A2) 1 2] =0, (4.9
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A : VI. NUMERICAL ANALYSIS OF MAXIMAL GROWTH
D1A2t 8142+ 1G2(Mrk™ Ny-1) RATES OF THE INSTABILITY OF CIRCULARLY
g1 . . POLARIZED LASER RADIATION IN PLASMAS
+ 5 [(1A1=Ag) ok = (1AL Ag) 2] =0, (4.2)
A. Slab geometry
. Consider the growth rate for problentd4.1)—(4.4). The
Degpt x 2n+ 0ol (A1 +iA2) -+ (A1=iA2),+1]=0, (43  results of computations are depicted in Figs. 3 and 4. A range
of values of dimensions of matr were considered accord-
Dn— vy Lx%4=0, (4.4 ingto:l=6+12, j=0,1,2...17.Higher values of corre-
spond to higher numbers of harmonicst2l included in the
where simulation, as seen in Fig. 3. Incident laser radiation fre-
quency corresponds tp=1. The wave vector of the scat-
X tered radiation isy. Propagation in the positive direction of
—2) - ygl. thexz axis corresponds tp>0 and propagation in the nega-
oK tive direction corresponds tp<<O.

Perturbation growth rates as functionsyofre shown in
Figs. 3 and 4. The scattered radiation comprises a set of
harmonics and each of them is a doublet consisting of a
Stokes and an anti-Stokes component. Therefore all the
V. CONSERVED CIRCULAR POLARIZATION peaks in Figs. 3 and 4 are locatedyat = jk =k, . There are

APPROXIMATION also small peaks negy= =* jk corresponding to the fluid

In contrast t9,13], Egs.(3.8—(3.12 and their slab ge- dynamics analog of Compton scattering.
ometry analogs(4.1)—(4.4) describe electromagnetic field  Computations show that for sufficiently high valuesnof
perturbations of arbitrary polarization. Circular polarizationthe changes in the growth rates become small in all the har-
of perturbations was assumed [i8,13] resulting in a sub- MONICS except for a few highest Qn&_ee Fig. 3 In other _
stantial loss of generality. Let us demonstrate that under ce¥ords, there is a boundary effect in simulations with a finite
tain assumptions Eq&.1)—(4.4) are reduced to those for the dimensionB matrix. For example, thg=0,1, ... 14har-

D,=— a2+ 2iqxd,+

Their form and the structure of the corresponding marix
Eq. (3.13 are similar to those of the three-dimensional case

circularly polarized laser pulses. monics are described well enough for=210 whereas the
Consider the slab geometry case. For circularly polarized = 15,16,17 harmonics are distorted by the boundary effect.
perturbations of the electromagnetic radiation we have Figure 4 shows the simulation results corresponding to an

electron concentration, which is a factor of 2 lower than in
the case depicted in Fig. 3. Consequently the plasma fre-
guencyw, and the plasma wave vectky are a factor of »2

wherea is the slow amplitude of the electromagnetic field. In/oOWer and the Raman scattering components are located a

2 : : "
terms of Fourier transforms the above equation is written af2ctor of 22 closer in the case depicted in Fig. 4.
As follows from Fig. 4, Raman scattering components are

i broader when the intensity of the incident laser pulse is
=1 = — higher. Pairs of Raman scattering components mergs, at
M2ty A= (B beid. B =1. Therefore harmonics components are distinguishable in
) ) ) the relativistic caseg,>1) but the Raman scattering com-
a, andb, being the Fourier transforms afanda*l. Substi-  ponents can be undistinguishable.
tuting these relations in Eqé4.1) and(4.2) we arrive at the Importantly, understanding the dependencies of the scat-
following equation fora: tering bandwidths on the intensity of the propagating laser
radiation can be used for the experimental diagnostics of the
propagation process.
It is interesting to compare the results of the above simu-
lations to those of9] where circular polarization of scattered
=2g,n—gq(at+b). (5.2 radiation was assumed in the case of slab geometry. As we
have seen this assumption leads to not detecting the infinite
Differentiating Eq.(4.4) in time, using Eq(4.3), and ex-  set of harmonics. Then the dimension of the problem matrix
pressinga, andb, from Eq.(5.1), we derive an equation for is 6x6. But for an arbitrary polarization all the harmonics

A=1(e+ieya expli(kx3— wt))+c.c.,

X e X
k2’)/0 t

a+2i
Ko

- a[t"l_ ZIartJ’_

the plasma wake to the propagating radiation, are excited and interact in the slab geometry case. Math-
ematically this amounts to the necessity to solve an infinite
_ . agx> set of coupled linear differential equations. Note that the
[(d—igx)*+ v 'In=— 5.2 (a+b). (5.3 simulations performed with thB matrix of a low 8x8 di-
Yo mension yield results similar to those [&f].

Equations(5.2) and (5.3) are the Fourier transforms of the
equations used ifP] to study the instability of laser radiation
in plasma in the framework of the conserved circular polar- In this section the growth rate of proble&8—(3.12) is

ization assumption. calculated as the function of the three components of the

B. Three-dimensional case
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axially symmetric. The latter fact follows from the axial
] asymmetry of the linearized equations on the incident wave
G 0.8 1 period. Figures 5, 6, and 7 show the growth rate of the in-
stability of a plane circularly polarized monochromatic
] | wave. The dependence of the growth ratekgnand y for
008 ] k,=0 is depicted in Fig. 5. Figure 6 shows the same growth
: rate as the function df, andy for (k,/k;)=10"3. The case

‘ k,=0 is illustrated by Fig. 7.
K The oscillating coefficients of the linearized equations are
§ 30,00 4000 50.00 £0.00 written in a different way in different reference frames. In
X our case the growth rate is calculated assuming that the vec-
tor Aq is directed along the, axis atx;=0 fort=0. But the

NN

O.00 e
006

o choice of the zero moment of time within the period of the
1 <C> incident wave is random. This means that the growth rate
] must be averaged over the initial time moment within the
0.12 -

wave period, which is equivalent to averaging the growth
rate over the azimuthal angle. So the unaveraged results are
] intermediate and “are not observed,” whereas the averaged
G 0.08 values correspond to the physically observable quantities.

] Figure 8 shows the averaged growth rate as the function
of k, andy. It is quasiperiodic iny. Obviously there aréi)

ooi a set of interconnected ringsij) repetitive peaks located

Ll

T T T TP TTTTrTT

0.00 ? ; T
—40.00 —20.00 0.00 20.00  40.00

X

T T

T
60.00 80.00

FIG. 3. Slab geometry. The influence of the number of harmon-
ics included in the simulation on the growth rate. Number of har-
monics: (a) 2j+1=5, (b) 15, (c) 35. Parameter values am
=0.1, £2=7.43<10 2. Dependencies of the growth rate on the
wave vector fory>0 are depicted. The plot is symmetric yn

wave vector(k,y). However, only dependencies on two vari-
ables can be plotted. For example, we consider the follow-
ing growth rate distributions: G(k4,0,x), G(0k,,x), 2

G(ky,kz,0), andG(k cosa/k, sinea,x), wherea is an angle FIG. 5. The dependence of the instability growth ratekgrand
andk, = \/kl2+ kzz. Simulations show that the growth rate is y for k;=0. The simulation parameters asg=0.1, £2=7.4362
guasiperiodic iny and that its transverse distributions are notx 10 2.

k
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FIG. 6. Th f the instabilit wth rat
X forcik6/k )Sfg’pg’en'?ﬁgcsrzula:?olr:lspzl:;ge?er?s aﬂéi%‘%“:f FIG. 8. The dependence of the two-dimensional growth rate
2 l - . - . y

— 743624102 distribution averaged over the azimuthal anglekonand y. The
' ' parameter values am=0.1, £>=7.43x 10 2.

near thee; axis, and(iii) an increase in the growth rate for in Fig. 8. The ring structures corresponding to large values of
k, — oo, m are averaged out but they are found in unaveraged distri-
Details of the scattering of circularly polarized laser butions. There are no anti-Stokes components in the medium
pulses in plasmas are illustrated in Fig. 8. Harmonics withfor which the ground state involves no plasma wave with the
wave vectors makingnk,— ok, m=0,£1,+2, ... are ex- frequency maki_ngop, apd the computations corrqborate this
cited in the plasma into which the incident pump wavefact. But wave interactions between the harmonics witt
propagategk,= e;k and &k is the wave-vector shift due to and the backscattered Stokes components ljtdo result
the electron responségk|<|ko|). Energy and momentum [N waves the wave vectors of which are directed along the
are conserved by the initial set of equatid@s]. Since no ~ Propagation axis, their magnitudes makingtn)k+k,.
additional assumptions are introduced in their subsequerU€ to this the scattering pattern looks like there are anti-
treatment the theory presented describes the electron refokes components in the slab geometry case. For this reason
sponse adequately. Due to the decay instability each of th@ the three-dimensional case anti-Stokes scattering compo-
harmonics gives rise to an electromagnetic wétie Stokes Nents will be observed in narrow solid angles near the axis of

component of Raman scatteringnd a plasma wave: the propagation of the incident wave.
The increase in the growth rate lat— o corresponds to
mko— k—kp+Ke, Mwg— dw=(Mwg— dw—wp)+ wp. the generation of a continuum of scattered radiation, i.e., to

the emergence of radiation having a continuous spectrum. It
Since the wave vector of cold plasma oscillations is arbitranjs well known that synchrotron radiation is emitted by an
the direction ofk/, in space is also arbitrary. Thus the spatial electron traveling along a circular orbit and this radiation is
distribution of the growth rate is similar to a circle with the an infinite set of harmonids37]. When the circular orbits are
radius makingk/|. Furthermore, wave interactions result in distorted the radiation spectrum changes and the continuum

scattered waves witk” =nko+k/,, wheren andm are any =~ €MErges.

integers. The structure of the& =nk,+k; rings can be seen There are at least three reasons for the generation of a
continuum in experiments: (1) Bremsstrahlung and, par-

tially, photorecombination radiation in the plasm@) The
laser radiation’s being nonmonochromatic, which is of par-
ticular importance in the case of ultrashort pulsgy; The
nonharmonic character of the electron currents in plasma.
This circumstance is related to the onset of plasma turbu-
lence and the anomalous increase in the emission of radiation
from it.

Eigenvectors of systen8.13 were calculated as well as
growth rates. In the slab geometry case the eigenvector cor-
responding to the maximal growth rate is of a resonant char-
acter, i.e., it is not equal to zero for those valuegpivhich
are approximately equal to the wave vector of the harmonics.
For thosey in the interval between the nearest two harmon-
ics wave vectors only the components of the eigenvectors
corresponding to these two harmonics are not equal to zero.

FIG. 7. The dependence of the instability growth ratekpmnd It is of interest that in slab geometry the eigenvectors are
x for k,=0. The simulation parameters asg=0.1, £2=7.4362 found to be the superpositions of left and right circular po-
X102, larizations.
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A large number of eigenvector components are not equatularly polarized waves in plasmas are presented. The fol-
to zero in the continuum area for the scattering at larggdowing phenomena are described by the theor§)
angles to the propagation direction. There is little informa-excitation of harmonics of the propagating laser radiation in
tion in these eigenvectors since they cannot be normalizeghe nonlinear mediumi) scattering by plasmonsii) scat-

numerically. tering due to the fluid dynamics analog of Compton effect;

The slab geometry problem analysis makes it possible t%v) decay instability at harmonics resulting in scattered elec-

conclude that an initial perturbation that is localized in khe omagnetic waves and plasmofe) interactions of electro-
space evolves generating the nearest harmonics consgomag P

quently. magnetic waves in plasmaii) generation of a continuum of
The present theory leads to an interesting hypothesis ofcattered radiation.

the polarization of the scattered radiation. Since at each mo- The above phenomena are studied in both the relativistic

ment of time perturbations in plasma infinitesimal volumesand nonrelativistic cases.

are sums of perturbations generated at different moments of Simulations show that scattering both forward and back-

time on the wave periodthe problem is linegrand the ward is possible. Radiation is comprised of a set of harmon-

asymptotic solutions corresponding to different initial mo-jcs. The harmonics are scattered into a set of spatial cones

ments of time differ from each other by a rotation of the jmpedded in one another. Higher harmonics are scattered

space by an azimuthal phase anglaround thes; axis one Lnto more narrow cones. The spectrum of radiation scattered

322”';;5;(&8%;*1%5';%;SS:J;;?O\@(_XO; Bgte&'il f\éerggg V&5utside of the cones is continuous. The latter phenomenon is
1/ — Y 2/ — Yy H

(Az)#0. Naturally the average values of the squares of alporgmant. : it | bers that ttered int
these quantities are not equal to zero. Thus the radiation "'armonics with lower numbers that are scatiered into
should be partially depolarized. A more detailed study 0f.relatlvely wide cones can propagate outside the spatial area

these issues should be based on the methods of statistidfl Which the incident laser pulse is localized whereas the
physics[38] and is beyond the scope of the present paper. high number harmonics propagate with the pulse. It should
The theory presented above is applicable in the nonrelabe possible to record them experimentally by the pulse spec-
tivistic limit as well. In this case the terms proportionalep  tral analysis using a specially arranged geometry. The inten-
should be dropped angly=1 should be assumed in Egs. sity of scattering backwards is low due to the short time of
(3.9—(3.7). In contrast to the relativistic case the corre-interaction between counterpropagating befd.
sponding eigenvalue problem is posed for a 20-diagonal ma- A slab geometry theory of scattering of relativistically
trix. The nonrelativistic simulations fa,=0.1 yield results  jytense laser radiation in plasmas without assuming conser-
which are identical to those illustrated by Figa# vation of polarization of the incident laser pulse is a particu-
The nonrelativistic problems have been examined for Rar case of the general theory proposed in the present paper.

!ong time an(_j the approach(_es us_ed w@t}athe study of It is shown that in this case scattering results in the excitation
instabilities with the help of linearized equations and reso-

nance approximations based on exact phase mat¢Bifig of a sequence of harmonics. Every harmonics constitutes a
(b) the treatment of the dispersion relations without phas oublet consisting of a Stokes and an anti-Stokes component.

matching conditiong18] (initial and boundary-value prob- thzerrzglcg;[g/rlwsigﬁsagg h(:;ﬁ{gr?i-gss&iﬁz?jnm nonlinearities are
lems. As follows from the pr nt st r nan roxi- . . . : . .
ems. As follows fro € present study resonance appro It is established in the framework of the three-dimensional

mations should be avoided in the relativistic case due to th o i .
ﬁ1eory that the most significant effects associated with scat-

broadening of the resonant structures. i . T
It is of interest to compare the results of the present workering at large angles to the propagation direction are the
generation of a Stokes component at the laser pulse fre-

and the conclusions dfL0], where dispersion relations for . =
the scattering of a circularly polarized wave in the three-duency and of a continuum of sc_attered radiation. These phe-
nomena can be observed experimentally.

dimensional geometry were derived. The author re- i ) L .
9 y 5101 The harmonics resulting from scattering in small solid

stricted their study to the case kf=0 assuming that the . ;
problem is axiallyysymmetrioiin fagt the situatiog is more angles include both Stokes and anti-Stokes components, the
hIgtter resulting from the interactions of the higher-order har-

complicated and the growth rate must be averaged over t . X
azimuthal angle ik space. A series of the Stokes harmon- ToniCs and backscattered Stokes components. It is shown
; that the harmonics are doublets in case the incident laser

ics of Raman scatterinl0] corresponds to our set of rings ) N S

for the scattered waves having the wave vektor But there pulse intensity is nonrelat|V|st|c Bt components becgmg

are the following differencesta) in [10] the growth rate broader and merge in the case of relativistically intense inci-
9 g dent laser radiation. The latter fact can be helpful in experi-

tends to zero when the polar angle tends to 0 anahile in mental studies of laser-plasma interactions since the depen-

our _unaveraged picture it tends to the values obtained bEﬁence of the scattering bandwidths on the laser intensity can
solving the slab geometry problertin) only the Stokes com- be used in diagnostics of the propagation process.

ponent of Raman scattering with the wave vectokpfon The predictions of the three-dimensional theory for the

the continuum background is found in the avergged picture 6§cattering angles equal to 0 amdare identical to the results

large angles(c) there are bpth Stokes and anti-Stokes COM-¢ the slab geometry simulations.

ponents for all the harmonics scattered at small angles. The technique of calculating the maximal growth rates

numerically as the eigenvalues of the matrix of the right-

hand sides of an infinite set of coupled ordinary differential
The results of a rigorous linear three-dimensional instabil-equations is used for the first time for the treated class of

ity analysis for the propagation of plane monochromatic cir-problems. This approach is more efficient than deriving and

VII. CONCLUSIONS
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investigating extremely complicated dispersion relations foperiments with relativistic intensities whereas the theory is
the growth rates. developed in the present paper for a circularly polarized

The following facts are important as far as the comparison‘ground state.” However, the range of physical phenomena
of the proposed theoretical results with experimental data isutlined above should occur in the case of linear polarization
concerned. First, absorption of laser radiation in plasma igf laser pulses as well. It should be noted that a new theory
neglected in the calculations. Including absorption in theof |inearly polarized nonmonochromatic plane electromag-

model can alter the results Sl|ght|y Second, particular eXnetiC waves in p|asmas was presented above.
perimental geometry and the impact of a finite pulse duration

can be important. The theory presented above is applicable if

(@) the minimal scattering domaifthe beam transverse sjze

is much greater than the wavelengilly) the time of the

development of the instability considered is less than the The present work was partially supported by the Russian

pulse duration. Foundation for Basic Resear(@rant Nos. 96-02-16401 and
Linearly polarized laser radiation is typically used in ex- 96-02-18264.
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