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Raman scattering and excitation of the harmonics of intense laser radiation in cold plasmas
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Plane linearly and circularly polarized intense electromagnetic waves in cold underdense plasmas are con-
sidered and approximate expressions for them and adiabatic relations between their local amplitudes and
frequencies are established. A general three-dimensional theory is developed for the instability of propagation
of a plane monochromatic circularly polarized electromagnetic wave in plasma including the violation of its
initial polarization. Excitation of harmonics resulting from the relativistic and charge-displacement nonlineari-
ties, scattering due to the response of the electron fluid, decay instability of harmonics leading to the emergence
of scattered electromagnetic waves and plasmons, wave-wave interactions, and the generation of a continuum
of scattered radiation are studied.@S1063-651X~99!10301-5#
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I. INTRODUCTION AND BASIC EQUATIONS

A number of recent works were dedicated to theoreti
and experimental studies of the propagation of ultrahigh
tensity laser radiation in matter@1–17#. Intensities on the
order of 1018 W/cm2 or higher are considered ultrahigh sin
the motions of electrons driven by them are relativistic.
present ultrashort laser pulses of such intensities are use
experiments@14–16#, including experimental observations o
scattering@17#. The central part of an ultrashort laser pul
focused into matter interacts with the plasma that is form
at its front. It is well known that matter irradiated by a pow
erful laser can be polarized due to nonlinear currents of
electrons@18#, deformations of electron shells of atoms a
ions@19#, and vibrations and rotations of molecules@20#. The
first of the above effects plays a major role in experime
with light atomic gases since in this case the ionization
matter is complete. Below we consider the scattering of la
radiation under these circumstances. Scattering of la
pulses in plasmas at nonrelativistic intensities was stud
for example, in@18,21–26#. Scattering and excitation of har
monics at relativistic intensities were treated in pap
@1,2,9–11,13# ~see also@3–7#!.

Schematically one can say that there are two practic
unrelated aspects of the problem of scattering of laser ra
tion in matter. The first aspect concerns finding local char
teristics of the medium, namely, the temporal growth ra
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~spatial gains! of the scattered radiation in a plasma infin
tesimal volume as functions of components of the scatte
light wave vector and the incident pulse parameters. In c
trast, the second one is an integrodifferential transport pr
lem of calculating the radiation field far from the scatteri
domain accounting for absorption and gain on the to
propagation distance. The first of the above problems
treated in detail in the present paper: the scattering temp
growth rates are calculated. The second problem is con
ered on a qualitative level only.

The task of developing a spatially three-dimension
model of scattering of circularly polarized relativistically in
tense plane monochromatic electromagnetic waves in pla
was addressed recently@10,13#. The theory proposed in thes
works includes a range of wave phenomena: excitation
harmonics, Raman scattering, the fluid dynamical analog
Compton-effect, etc., as well as the limits that have be
studied previously, mainly the nonrelativistic one. Referen
@11# is dedicated to the same problem but a linearly polariz
pump is considered in it.

However, various approximations are used in the exist
literature due to the complexity of the problem of scatteri
of relativistically intense electromagnetic waves in plasm
These approximations include~1! the slab geometry limit
~see, for example,@9#!; ~2! the assumption of conservation o
a certain type of polarization, circular in particular@13#; ~3!
the calculation of growth rates under the assumption that
of the wave vector components is zero@10#; and ~4! reso-
nance conditions based on exact phase matching~see, for
example,@24#!.

Neither of the above approximations is used in the fram
work of the theory of scattering of relativistically intens
laser radiation in plasmas, which is developed in the pres

cs,
e,
2253 ©1999 The American Physical Society
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paper. We employ numerical techniques to describe harm
ics excitation, Raman scattering by plasmons, the fluid
namics analog of Compton scattering, generation of a c
tinuum of radiation, and the interplay of all thes
phenomena. Linearized Maxwell equations and the equat
of fluid dynamics for the electron component of lase
irradiated plasma are analyzed rigorously.

One needs an exact ground-state solution of the in
nonlinear set of equations to perform such analyses. In g
eral, plane electromagnetic waves of arbitrarily high inten
ties propagating in cold underdense plasmas are describe
solutions to the classic Akhiezer-Polovin problem@27#. Be-
low we develop a class of approximate solutions to this pr
lem corresponding to high frequency electromagnetic wa
with the help of a nonlinear analog of the WKB approxim
tion. In the present paper the exact solution correspondin
a plane circularly polarized monochromatic electromagn
wave @27# is used for the linear instability analysis.

It should be noted that stability analysis was performe
number of times for linearly polarized monochromatic wav
that do not correspond to exact solutions of the initial no
linear set of equations and consequently the resulting the
was applicable to the case of low intensities only.

The problem of instability of a plane circularly polarize
monochromatic electromagnetic wave in plasma is redu
to a set of linear partial differential equations with rapid
oscillating coefficients. When a comoving variable is intr
duced and the equations are Fourier transformed in spac
infinite linear set of coupled ordinary differential equations
derived ~the infinite dimension of the set is related to t
need to describe excitation of numerous harmonics and t
interactions!. The simulations performed show that a corre
solution to the above problem can be obtained by trea
over a hundred coupled ordinary differential equations. T
temporal growth rate of the problem is defined as the ma
mal eigenvalue of the matrix of the above set of equations
particular, this approach makes it possible to avoid deriv
and solving complicated dispersion relations. Note tha
similar technique is applied in fluid dynamics for analyzi
the linear stage of the emergence of turbulence@28#. Previ-
ously the authors of the present paper used this metho
analyze the instability of a plane electromagnetic wave in
framework of the circular polarization conservation appro
mation @13#.

Thus, the results of a rigorous linear analysis of the se
Maxwell equations and the relativistic fluid dynamics
plasma electrons are presented below for the first time.

The propagation of relativistically intense laser radiati
in cold underdense plasma is described by the Maxw
equations and the equations of relativistic fluid dynamics
the plasma electron component~for example, see@29#!,

~D2] t
2!A5¹w t1

n

g
~A1¹c!, ~1.1!

Dw5n21, ~1.2!

~¹,A!50, ~1.3!

c t5w2g, ~1.4!
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g
~A1¹c! D50, ~1.5!

g5A11uA1¹cu2. ~1.6!

Here A and w are the vector and scalar potentials of t
electromagnetic field,c is the potential of the generalize
momentum, andn is the electronic concentration. Equatio
~1.6! defines the relativistic mass factorg.

The quantities in Eq.~1.1!–~1.6! are normalized as fol-
lows: A and w are normalized bymc2/e, n—by its unper-
turbed valuen0 , time—by 1/vp , wherevp is the unper-
turbed plasma frequency, and the coordinates are norma
by c/vp .

Conservation laws for the system comprising Eqs.~1.1!–
~1.6! can be found, for example, in@29#.

II. SELF-MODULATED RELATIVISTICALLY INTENSE
HIGH FREQUENCY PLANE ELECTROMAGNETIC

WAVES IN COLD UNDERDENSE PLASMAS

A. Akhiezer-Polovin problem

The propagation of relativistically intense plane elect
magnetic waves in cold plasmas is described by the cla
Akhiezer-Polovin problem@27#. In general the solutions to
this problem can be developed numerically. Analytical e
pressions for these solutions are available for low amplitu
and purely longitudinal waves@27# as well as when the lon
gitudinal component of the plasma electronic momentum
small @30,31#. A numerical study of solutions to the
Akhiezer-Polovin problem on the phase plane is presente
@32#.

In the present section we develop some numerical
approximate analytical solutions to the Akhiezer-Polov
problem. These solutions describe linearly and circularly
larized self-modulated electromagnetic waves propagatin
plasma with a phase velocity close to the speed of light.

Following @27# we put ¹'50 in Eq. ~1.1!–~1.6! and
further assume that all the unknown functions depend
the comoving variablej5x2qt, where the phase velo
city ~normalized by the speed of light! is expressed asq
5(11«2)1/2, « being the problem parameter. As shown
@27#, in this case the problem is reduced to the following
of coupled nonlinear ordinary differential equation for th
vector and scalar potentials

«2Ajj1F~A,w,«!A50, ~2.1!

«2wjj1F~A,w,«!w2150, ~2.2!

F~A,w,«!5A 11«2

w21«2~11uAu2!
. ~2.3!

The invariants of this problem are expressed as@27#

«2uAju21wj
21W~A,w,«!5E[const,

W~A,w,«!5
2

«2
~A11«2Aw21«2~11uAu2!2w!,

A1A2j
2A2A1j

5M[const,

whereA1 andA2 are the transverse components of the vec
potential ~A350 in the Coulomb gauge!. The longitudinal
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momentum of the plasma electron component and the
turbation of the electron concentration are functions of
vector and scalar potentials

p5«22~Aw21«2~11uAu2!2wA11«2!, ~2.4!

n215«22S 12
wA11«2

Aw21«2~11uAu2!
D . ~2.5!

B. Linearly polarized plane electromagnetic waves

Figure 1 shows a numerical solution to Eqs.~2.1!–~2.3!
~linear polarization!. Obviously, amplitude modulation oc
curs, namely, the electromagnetic radiation is concentra
between the peaks of the electrostatic potential. One can
see that the frequency of the vector potential oscillation v
ies between the peak and the minimum of the scalar po
tial, i.e., phase modulation also takes place.

Generally the phase velocity of electromagnetic wave
close to the speed of light and the parameter« is small in
case the frequency of the propagating laser pulse is m
greater than the unperturbed plasma frequency. Our go
to develop asymptotic expansions of the solutions to E
~2.1!–~2.3! in « in this particular case. We use the ansa
~see, for example,@33#!

A1~j!5U~j,Q!1 (
m51

`

«mUm~j,Q!, ~2.6!

w~j!5f~j,Q!1 (
m51

`

«mfm~j,Q!, ~2.7!

Qj5«21k~j!. ~2.8!

Herek(j) is an additional independent function. Substituti
Eqs. ~2.6!–~2.8! in Eqs. ~2.1!–~2.3! and eliminating secula
terms in the lowest orders in« we arrive at the following
averaged nonlinear equation:

FIG. 1. Numerical solutions to the Akhiezer-Polovin proble
@Eqs. ~2.1!–~2.3!# for the initial conditions:A1(0)51.2, A1j(0)
50, w(0)52, wj(0)50, e50.1.
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f1/2

f2
21D , ~2.9!

and find thatk(j)5f21/2(j) and

Q5«21E f21/2dj, ~2.10!

U~j,Q!5af1/4sin Q. ~2.11!

In the above equationa can be interpreted as the parame
of coupling of the electromagnetic field and the Langm
wake of the plasma. The value of this parameter is de
mined by initial conditions. The following conservation la
is associated with Eq.~2.9!:

fj
21V~f!5E5const, ~2.12!

V~f!5f1f211a2f21/2. ~2.13!

Figure 2 shows the scalar potentialw and the self-
modulated amplitude of the vector potential calculated us
Eqs.~2.9! and ~2.11!. The initial conditions are the same a
in Fig. 1.

Note that a similar technique was used in@34# to describe
soliton modes of propagation of relativistically intense las
pulses in plasmas.

It follows easily from Eqs.~2.12! and ~2.13! that the pe-
riod of the slow Langmurian waves generated by the pro
gating rapidly oscillating field is given by

T~E,g2!5 R df

AE2V~f!
, ~2.14!

wherer denotes integration over a full cycle between the t
solutions ofV(f)5E.

Combining Eqs.~2.6!–~2.8!, ~2.11!, ~2.4!, and ~2.5! one
finds that the concentration and longitudinal momentum
the plasma electron component are

FIG. 2. The scalar potentialw and the amplitude of the vecto
potential calculated using Eqs.~2.9! and ~2.11!. The initial condi-
tions are the same as in Fig. 1.
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n215
1

2
S 11

a2

2
f1/2

f2
21D 2

a2

4f3/2
cos 2Q,

p5f~n21!, ~2.15!

which shows that the electron fluid concentration and m
mentum exhibit a slow response to the propagating elec
magnetic field and oscillations at the frequency of the sec
harmonics.

Two simple analogies are related to Eqs.~2.10! and
~2.11!. Note that a formal expansion of the nonlinearity
Eq. ~2.1! in «2 results in

«2Ajj1w21A50.

First, if we assume thatw varies slowly@and this assump
tion is natural since expanding Eq.~2.2! in «2 formally one
obtains an equation that is not singularly perturbed# the
above equation can be interpreted as the Einstein pendu
~i.e., a pendulum with a slowly varying frequency! problem
@35#. Even though in our case this frequency is not an
plicitly defined function but must be calculated from anoth
nonlinear equation there is the same relation between
local frequency

V~j!5f21/2~j!/«

and amplitudea05af1/4(j): a0
2V5a2/«. Consequently

the constanta2/« can be interpreted as an adiabatic invaria
of problem~2.1!–~2.3!. It should be noted that since the fre
quency shift can be recorded experimentally the pres
amplitude-frequency relation can be used for experime
diagnostics of the propagation process.

Second, the above equation for the vector potential is
mally analogous to the Schro¨dinger equation for a particle in
a potential well. In the framework of this analogy the sm
parameter« and the functionw21 play the roles of the Plank
constant and the square of the particle classical momen
respectively. Obviously the theory derived above is sim
to the WKB approximation.

The quantization condition for Eqs.~2.9!–~2.13! is also
analogous to that of quantum mechanics,

J5 R f21/2dj5 R df

Af„E2V~f!…
52p«m,

wherem@1 is an integer. The last equation is the dispers
relation for the plane waves studied since the local freque
of the electromagnetic field averaged over the slow per
makesV̄5(J/«T)5(2pm/T). The quantization conditions
correspond to the periodic solutions of the Akhiezer-Polo
problem.

The above quantization condition can be used to find
average intensity of the electromagnetic wave defined b
solution to the Akhiezer-Polovin problem. It can be deriv
easily that the corresponding normalized intensity is

I 5
a2

«2f1/2
cos2Q.
-
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Averaging it first over the fast oscillations and then over t
slow wave periodT and using the quantization condition w
get

Ī 5
pma2

«T
.

The simplest solution to Eq.~2.9! is a constantf5f0
.1, the corresponding electromagnetic field being mo
chromatic,

U5A2~f0
221!sin

j

«Af0

.

The linear instability of this solution is studied in@11#.

C. Circularly polarized plane electromagnetic waves

Asymptotic solutions to problems~2.1!–~2.3! correspond-
ing to the case of circular polarization are derived in a m
ner similar to that outlined above and expressed as

A1~j!5af1/4~j!cosQ,

A2~j!56af1/4~j!sin Q,

and the equation forf and its first integral differ from those
given by Eqs.~2.9!, ~2.12!, and~2.13! in the following way:
there isa2 instead ofa2/2 and 2a2 instead ofa2 in them,
respectively. In this case there is no second harmonics c
ponent in the plasma wake,

n215
1

2 S 11a2f1/2

f2
21D

@the electron fluid momentum is related to the above quan
by Eq. ~2.15! just as in the case of linear polarization#.

Also, just like the case of linear polarization there ex
monochromatic circularly polarized waves given by@27#

A15Af0
221 cos

j

«Af0

, ~2.16!

A256Af0
221 sin

j

«Af0

. ~2.17!

It should be noted that this particular solution is an ex
one. A number of works was dedicated to its instability~for
example, see@9–13#!, which will be considered below a
well.

III. EQUATIONS DESCRIBING THE INSTABILITY
OF CIRCULARLY POLARIZED MONOCHROMATIC

LASER RADIATION IN PLASMAS

Introducing the notations

a05Af0
221, f05g0 , k5

1

«Af0

,

we present Eqs.~2.16! and~2.17! describing the propagation
of a plane monochromatic circularly polarized wave in t
form

A05 1
2 ~e11 ie2!a0exp~ ikj!1c.c. ~3.1!

In this case we also have
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v22k25g0
21, g05A11a0

2, n51, w5g0 , c50.

Consider the evolution of small perturbations~which are
marked by;! in plasma against the background defined
the above relations,

A5A01Ã, n511ñ, w5g01w̃, c5c̃. ~3.2!

The linearized equations governing the perturbations are

~D2] t
2!Ã5¹w̃ t1g0

21~Ã1¹c̃1ñA0

2g0
23~A0 ,Ã1¹c̃!A0 , ~3.3!

Dw̃5ñ, ~3.4!

~¹,Ã!50, ~3.5!

c̃ t5w̃2g0
21~A0 ,Ã1¹c̃!. ~3.6!

The following continuity equation is obtained by calculatin
the divergence of the left and right hand sides of Eq.~3.3!
and using Eq.~3.4!,

ñt1g0
21~A0 ,¹ñ!

52g0
21Dc̃1g0

23
„A0 ,¹~A0 ,Ã1¹c̃!…. ~3.7!

Equations~3.3!–~3.7! are identical to those used in@10# ex-
cept for the normalization. But our method of studying t
instability is different from that used in this paper. We intr
duce comoving variables (x' ,j,t), the result being a set o
linear partial differential equations the coefficients of whi
are periodic inj. Since the propagation of radiation in a
unbounded plasma is considered we Fourier transform
set of equations inx' andj,

~Ã,w̃,ñ,c̃ !T5~2p!23/2E exp@ i „~k,x'!1xj…#

3~Ã,w̃,ñ,c̃ !T~k,x,t !d2kdx.

The symbol ‘‘;’’ denoting perturbations is dropped in wha
follows for brevity. The resulting equations for the Fouri
transforms are

D̂A11g1

ik1x2

k21x2
c 2g1

k1k2

k21x2
A21g1

k2
21x2

k21x2
A1

1g2@~F1,1
2 !x2k1~F1,1

1 !x1k#

1
g1

2
@~F1,2

2 !x22k1~F1,2
1 !x12k#50, ~3.8!

D̂A21g1

ik2x2

k21x2
c2g1

k1k2

k21x2
A11g1

k1
21x2

k21x2
A2

1g2@~F2,1
2 !x2k1~F2,1

1 !x1k#

1
g1

2
@~F2,2

2 !x22k1~F2,2
1 !x12k#50, ~3.9!

2~k21x2!w5n, ~3.10!
y

is

D̂tc 2w1g2@~P11 iP2!x2k1~P12 iP2!x1k#50,
~3.11!

D̂tn5~g0
21x21~g0

212g1!k2!c1 ig1~k1A11k2A2!

2g2~~ ik12k2!nx2k1~ ik11k2!nx1k!

1
g1

2
@~ ik12k2!P12~ ik21k1!P2#x22k

1
g1

2
@~ ik11k2!P12~ ik22k1!P2#x12k . ~3.12!

Here

g15
a0

2

2g0
3

, g25
a0

2g0
, k25k1

21k2
2,

A5~A1 ,A2 ,A3!, P1,25A1,21 ik1,2c,

D̂t5] t2 iqx, D̂52] t
212iqx] t1S x2

g0k22k2D2g0
21,

F1,1
6 5S k1

k17 ik2

k21x2 21Dn,

F1,2
6 5S 12k1

k17 ik2

k21x2 D ~P17 iP2!,

F2,1
6 52 inS ik2

k17 ik2

k21x2 71D ,

F2,2
6 5S k2

ik16k2

k21x2 71D ~ iP16P2!.

Shifting the argumentx in the above equations by6 lk,
where l stands for an integer, we establish an infinite set
coupled linear ordinary differential equations for the amp
tudes of laser radiation harmonics comprising the pertur
tions. This set can be presented as

Yt5BY, ~3.13!

whereY is an infinite column andB is an infinite 35-diagonal
matrix. Below the eigenvalues of matrixB will be calculated
numerically with the help of the techniques presented
@36#.

IV. SLAB GEOMETRY EQUATIONS

In the slab geometry casek150 and k250, and Eqs.
~3.8!–~3.12! become

D̂1A11g1A12g2~nx2k1nx1k!

1
g1

2
@~A11 iA2!x22k1~A12 iA2!x12k#50, ~4.1!
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D̂1A21g1A21 ig2~nx1k2nx2k!

1
g1

2
@~ iA12A2!x22k2~ iA11A2!x12k#50, ~4.2!

D̂tc1x22n1g2@~A11 iA2!x2k1~A12 iA2!x1k#50, ~4.3!

D̂tn2g0
21x2c50, ~4.4!

where

D̂152] t
212iqx] t1S x2

g0k2D 2g0
21.

Their form and the structure of the corresponding matrixB in
Eq. ~3.13! are similar to those of the three-dimensional ca

V. CONSERVED CIRCULAR POLARIZATION
APPROXIMATION

In contrast to@9,13#, Eqs.~3.8!–~3.12! and their slab ge-
ometry analogs~4.1!–~4.4! describe electromagnetic fiel
perturbations of arbitrary polarization. Circular polarizati
of perturbations was assumed in@9,13# resulting in a sub-
stantial loss of generality. Let us demonstrate that under
tain assumptions Eqs.~4.1!–~4.4! are reduced to those for th
circularly polarized laser pulses.

Consider the slab geometry case. For circularly polari
perturbations of the electromagnetic radiation we have

A5 1
2 ~e11 ie2!a exp~ i ~kx32vt !!1c.c.,

wherea is the slow amplitude of the electromagnetic field.
terms of Fourier transforms the above equation is written

A15 1
2 ~ax2k1bx1k!, A25

i

2
~ax2k2bx1k!, ~5.1!

ax andbx being the Fourier transforms ofa anda* . Substi-
tuting these relations in Eqs.~4.1! and~4.2! we arrive at the
following equation fora:

2att12iqxat1
x2

k2g0
a12i S vat2

ix

kg0
aD

52g2n2g1~a1b!. ~5.2!

Differentiating Eq.~4.4! in time, using Eq.~4.3!, and ex-
pressingax andbx from Eq.~5.1!, we derive an equation fo
the plasma wake to the propagating radiation,

@~] t2 iqx!21g0
21#n52

a0x2

2g0
2 ~a1b!. ~5.3!

Equations~5.2! and ~5.3! are the Fourier transforms of th
equations used in@9# to study the instability of laser radiatio
in plasma in the framework of the conserved circular pol
ization assumption.
.
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VI. NUMERICAL ANALYSIS OF MAXIMAL GROWTH
RATES OF THE INSTABILITY OF CIRCULARLY
POLARIZED LASER RADIATION IN PLASMAS

A. Slab geometry

Consider the growth rate for problems~4.1!–~4.4!. The
results of computations are depicted in Figs. 3 and 4. A ra
of values of dimensions of matrixB were considered accord
ing to: l 56112j , j 50,1,2, . . . 17.Higher values ofj corre-
spond to higher numbers of harmonics 2j 11 included in the
simulation, as seen in Fig. 3. Incident laser radiation f
quency corresponds toj 51. The wave vector of the scat
tered radiation isx. Propagation in the positive direction o
thex3 axis corresponds tox.0 and propagation in the nega
tive direction corresponds tox,0.

Perturbation growth rates as functions ofx are shown in
Figs. 3 and 4. The scattered radiation comprises a se
harmonics and each of them is a doublet consisting o
Stokes and an anti-Stokes component. Therefore all
peaks in Figs. 3 and 4 are located atx56 jk6kp . There are
also small peaks nearx56 jk corresponding to the fluid
dynamics analog of Compton scattering.

Computations show that for sufficiently high values ofm
the changes in the growth rates become small in all the
monics except for a few highest ones~see Fig. 3!. In other
words, there is a boundary effect in simulations with a fin
dimensionB matrix. For example, thej 50,1, . . . 14har-
monics are described well enough form5210 whereas the
j 515,16,17 harmonics are distorted by the boundary eff

Figure 4 shows the simulation results corresponding to
electron concentration, which is a factor of 2 lower than
the case depicted in Fig. 3. Consequently the plasma
quencyvp and the plasma wave vectorkp are a factor of 21/2

lower and the Raman scattering components are locate
factor of 21/2 closer in the case depicted in Fig. 4.

As follows from Fig. 4, Raman scattering components
broader when the intensity of the incident laser pulse
higher. Pairs of Raman scattering components merge aa0
>1. Therefore harmonics components are distinguishabl
the relativistic case (a0.1) but the Raman scattering com
ponents can be undistinguishable.

Importantly, understanding the dependencies of the s
tering bandwidths on the intensity of the propagating la
radiation can be used for the experimental diagnostics of
propagation process.

It is interesting to compare the results of the above sim
lations to those of@9# where circular polarization of scattere
radiation was assumed in the case of slab geometry. As
have seen this assumption leads to not detecting the infi
set of harmonics. Then the dimension of the problem ma
is 636. But for an arbitrary polarization all the harmonic
are excited and interact in the slab geometry case. M
ematically this amounts to the necessity to solve an infin
set of coupled linear differential equations. Note that t
simulations performed with theB matrix of a low 838 di-
mension yield results similar to those of@9#.

B. Three-dimensional case

In this section the growth rate of problems~3.8!–~3.12! is
calculated as the function of the three components of
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wave vector~k,x!. However, only dependencies on two va
ables can be plotted. For example, we consider the foll
ing growth rate distributions:G(k1,0,x), G(0,k2 ,x),
G(k1 ,k2,0), andG(k'cosa,k' sina,x), wherea is an angle
andk'5Ak1

21k2
2. Simulations show that the growth rate

quasiperiodic inx and that its transverse distributions are n

FIG. 3. Slab geometry. The influence of the number of harm
ics included in the simulation on the growth rate. Number of h
monics: ~a! 2 j 1155, ~b! 15, ~c! 35. Parameter values area0

50.1, «257.4331022. Dependencies of the growth rate on th
wave vector forx.0 are depicted. The plot is symmetric inx.
-

t

axially symmetric. The latter fact follows from the axia
asymmetry of the linearized equations on the incident w
period. Figures 5, 6, and 7 show the growth rate of the
stability of a plane circularly polarized monochromat
wave. The dependence of the growth rate onk2 and x for
k150 is depicted in Fig. 5. Figure 6 shows the same grow
rate as the function ofk2 andx for (k2 /k1)51023. The case
k250 is illustrated by Fig. 7.

The oscillating coefficients of the linearized equations
written in a different way in different reference frames.
our case the growth rate is calculated assuming that the
tor A0 is directed along thee1 axis atx350 for t50. But the
choice of the zero moment of time within the period of t
incident wave is random. This means that the growth r
must be averaged over the initial time moment within t
wave period, which is equivalent to averaging the grow
rate over the azimuthal angle. So the unaveraged results
intermediate and ‘‘are not observed,’’ whereas the avera
values correspond to the physically observable quantities

Figure 8 shows the averaged growth rate as the func
of k' andx. It is quasiperiodic inx. Obviously there are~i!
a set of interconnected rings,~ii ! repetitive peaks located

-
-

FIG. 4. Slab geometry. The dependence of the instability gro
rate on the incident wave intensity forx.0. The plot is symmetric
in x. Incident wave amplitudes:a050.1; a053. «253.7231022.

FIG. 5. The dependence of the instability growth rate onk2 and
x for k150. The simulation parameters area050.1, «257.4362
31022.
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near thee3 axis, and~iii ! an increase in the growth rate fo
k'→`.

Details of the scattering of circularly polarized las
pulses in plasmas are illustrated in Fig. 8. Harmonics w
wave vectors makingmk02dk, m50,61,62, . . . are ex-
cited in the plasma into which the incident pump wa
propagates~k05e3k and dk is the wave-vector shift due to
the electron response,udku!uk0u!. Energy and momentum
are conserved by the initial set of equations@29#. Since no
additional assumptions are introduced in their subsequ
treatment the theory presented describes the electron
sponse adequately. Due to the decay instability each of
harmonics gives rise to an electromagnetic wave~the Stokes
component of Raman scattering! and a plasma wave:

mk02dk→km8 1ke , mv02dv5~mv02dv2vp!1vp .

Since the wave vector of cold plasma oscillations is arbitr
the direction ofkm8 in space is also arbitrary. Thus the spat
distribution of the growth rate is similar to a circle with th
radius makingukm8 u. Furthermore, wave interactions result
scattered waves withk95nk01km8 , wheren andm are any
integers. The structure of thek95nk01k18 rings can be seen

FIG. 6. The dependence of the instability growth rate onk2 and
x for (k2 /k1)51023. The simulation parameters area050.1, «2

57.436231022.

FIG. 7. The dependence of the instability growth rate onk1 and
x for k250. The simulation parameters area050.1, «257.4362
31022.
h

nt
re-
he

y
l

in Fig. 8. The ring structures corresponding to large values
m are averaged out but they are found in unaveraged di
butions. There are no anti-Stokes components in the med
for which the ground state involves no plasma wave with
frequency makingvp , and the computations corroborate th
fact. But wave interactions between the harmonics withmk0
and the backscattered Stokes components withkn8 do result
in waves the wave vectors of which are directed along
propagation axis, their magnitudes making (m2n)k1kp .
Due to this the scattering pattern looks like there are a
Stokes components in the slab geometry case. For this re
in the three-dimensional case anti-Stokes scattering com
nents will be observed in narrow solid angles near the axi
the propagation of the incident wave.

The increase in the growth rate atk'→` corresponds to
the generation of a continuum of scattered radiation, i.e.
the emergence of radiation having a continuous spectrum
is well known that synchrotron radiation is emitted by
electron traveling along a circular orbit and this radiation
an infinite set of harmonics@37#. When the circular orbits are
distorted the radiation spectrum changes and the contin
emerges.

There are at least three reasons for the generation
continuum in experiments: ~1! Bremsstrahlung and, par
tially, photorecombination radiation in the plasma;~2! The
laser radiation’s being nonmonochromatic, which is of p
ticular importance in the case of ultrashort pulses;~3! The
nonharmonic character of the electron currents in plas
This circumstance is related to the onset of plasma tur
lence and the anomalous increase in the emission of radia
from it.

Eigenvectors of system~3.13! were calculated as well a
growth rates. In the slab geometry case the eigenvector
responding to the maximal growth rate is of a resonant ch
acter, i.e., it is not equal to zero for those values ofx, which
are approximately equal to the wave vector of the harmon
For thosex in the interval between the nearest two harmo
ics wave vectors only the components of the eigenvec
corresponding to these two harmonics are not equal to z
It is of interest that in slab geometry the eigenvectors
found to be the superpositions of left and right circular p
larizations.

FIG. 8. The dependence of the two-dimensional growth r
distribution averaged over the azimuthal angle onk' and x. The
parameter values area050.1, «257.4331022.
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A large number of eigenvector components are not eq
to zero in the continuum area for the scattering at la
angles to the propagation direction. There is little inform
tion in these eigenvectors since they cannot be normal
numerically.

The slab geometry problem analysis makes it possibl
conclude that an initial perturbation that is localized in thek
space evolves generating the nearest harmonics co
quently.

The present theory leads to an interesting hypothesis
the polarization of the scattered radiation. Since at each
ment of time perturbations in plasma infinitesimal volum
are sums of perturbations generated at different momen
time on the wave period~the problem is linear! and the
asymptotic solutions corresponding to different initial m
ments of time differ from each other by a rotation of thek
space by an azimuthal phase anglec around thee3 axis one
should expect that the resulting vector potential average
ues satisfy the following relations:̂A1&50, ^A2&50, and
^A3&Þ0. Naturally the average values of the squares of
these quantities are not equal to zero. Thus the radia
should be partially depolarized. A more detailed study
these issues should be based on the methods of stati
physics@38# and is beyond the scope of the present pape

The theory presented above is applicable in the nonr
tivistic limit as well. In this case the terms proportional toa0

2

should be dropped andg051 should be assumed in Eq
~3.3!–~3.7!. In contrast to the relativistic case the corr
sponding eigenvalue problem is posed for a 20-diagonal
trix. The nonrelativistic simulations fora050.1 yield results
which are identical to those illustrated by Fig. 4~a!.

The nonrelativistic problems have been examined fo
long time and the approaches used were~a! the study of
instabilities with the help of linearized equations and re
nance approximations based on exact phase matching@24#;
~b! the treatment of the dispersion relations without ph
matching conditions@18# ~initial and boundary-value prob
lems!. As follows from the present study resonance appro
mations should be avoided in the relativistic case due to
broadening of the resonant structures.

It is of interest to compare the results of the present w
and the conclusions of@10#, where dispersion relations fo
the scattering of a circularly polarized wave in the thre
dimensional geometry were derived. The authors of@10# re-
stricted their study to the case ofk250 assuming that the
problem is axially symmetric~in fact the situation is more
complicated and the growth rate must be averaged over
azimuthal angle ink space!. A series of the Stokes harmon
ics of Raman scattering@10# corresponds to our set of ring
for the scattered waves having the wave vectorkm8 . But there
are the following differences:~a! in @10# the growth rate
tends to zero when the polar angle tends to 0 andp, while in
our unaveraged picture it tends to the values obtained
solving the slab geometry problem;~b! only the Stokes com-
ponent of Raman scattering with the wave vector ofk18 on
the continuum background is found in the averaged pictur
large angles;~c! there are both Stokes and anti-Stokes co
ponents for all the harmonics scattered at small angles.

VII. CONCLUSIONS

The results of a rigorous linear three-dimensional insta
ity analysis for the propagation of plane monochromatic c
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cularly polarized waves in plasmas are presented. The
lowing phenomena are described by the theory:~i!
excitation of harmonics of the propagating laser radiation
the nonlinear medium;~ii ! scattering by plasmons;~iii ! scat-
tering due to the fluid dynamics analog of Compton effe
~iv! decay instability at harmonics resulting in scattered el
tromagnetic waves and plasmons;~v! interactions of electro-
magnetic waves in plasma;~vi! generation of a continuum o
scattered radiation.

The above phenomena are studied in both the relativi
and nonrelativistic cases.

Simulations show that scattering both forward and ba
ward is possible. Radiation is comprised of a set of harm
ics. The harmonics are scattered into a set of spatial co
imbedded in one another. Higher harmonics are scatte
into more narrow cones. The spectrum of radiation scatte
outside of the cones is continuous. The latter phenomeno
dominant.

Harmonics with lower numbers that are scattered i
relatively wide cones can propagate outside the spatial
in which the incident laser pulse is localized whereas
high number harmonics propagate with the pulse. It sho
be possible to record them experimentally by the pulse sp
tral analysis using a specially arranged geometry. The in
sity of scattering backwards is low due to the short time
interaction between counterpropagating beams@13#.

A slab geometry theory of scattering of relativistical
intense laser radiation in plasmas without assuming con
vation of polarization of the incident laser pulse is a partic
lar case of the general theory proposed in the present pa
It is shown that in this case scattering results in the excita
of a sequence of harmonics. Every harmonics constitute
doublet consisting of a Stokes and an anti-Stokes compon
The relativistic and charge-displacement nonlinearities
the mechanisms of harmonics excitation.

It is established in the framework of the three-dimensio
theory that the most significant effects associated with s
tering at large angles to the propagation direction are
generation of a Stokes component at the laser pulse
quency and of a continuum of scattered radiation. These p
nomena can be observed experimentally.

The harmonics resulting from scattering in small so
angles include both Stokes and anti-Stokes components
latter resulting from the interactions of the higher-order h
monics and backscattered Stokes components. It is sh
that the harmonics are doublets in case the incident la
pulse intensity is nonrelativistic but components beco
broader and merge in the case of relativistically intense in
dent laser radiation. The latter fact can be helpful in expe
mental studies of laser-plasma interactions since the de
dence of the scattering bandwidths on the laser intensity
be used in diagnostics of the propagation process.

The predictions of the three-dimensional theory for t
scattering angles equal to 0 andp are identical to the results
of the slab geometry simulations.

The technique of calculating the maximal growth rat
numerically as the eigenvalues of the matrix of the rig
hand sides of an infinite set of coupled ordinary different
equations is used for the first time for the treated class
problems. This approach is more efficient than deriving a
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2262 PRE 59BOROVSKY, GALKIN, KOROBKIN, AND SHIRYAEV
investigating extremely complicated dispersion relations
the growth rates.

The following facts are important as far as the comparis
of the proposed theoretical results with experimental dat
concerned. First, absorption of laser radiation in plasma
neglected in the calculations. Including absorption in
model can alter the results slightly. Second, particular
perimental geometry and the impact of a finite pulse dura
can be important. The theory presented above is applicab
~a! the minimal scattering domain~the beam transverse size!
is much greater than the wavelength;~b! the time of the
development of the instability considered is less than
pulse duration.

Linearly polarized laser radiation is typically used in e
e

B
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e
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periments with relativistic intensities whereas the theory
developed in the present paper for a circularly polariz
‘‘ground state.’’ However, the range of physical phenome
outlined above should occur in the case of linear polarizat
of laser pulses as well. It should be noted that a new the
of linearly polarized nonmonochromatic plane electroma
netic waves in plasmas was presented above.
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